Polynomials with special regard to reducibility

Bibliographic Information

Polynomials with special regard to reducibility

A. Schinzel

(Encyclopedia of mathematics and its applications / edited by G.-C. Rota, v. 77)

Cambridge University Press, 2000

  • : hard

Available at  / 74 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. 540-554) and indexes

Description and Table of Contents

Description

This book covers most of the known results on reducibility of polynomials over arbitrary fields, algebraically closed fields and finitely generated fields. Results valid only over finite fields, local fields or the rational field are not covered here, but several theorems on reducibility of polynomials over number fields that are either totally real or complex multiplication fields are included. Some of these results are based on recent work of E. Bombieri and U. Zannier (presented here by Zannier in an appendix). The book also treats other subjects like Ritt's theory of composition of polynomials, and properties of the Mahler measure, and it concludes with a bibliography of over 300 items. This unique work will be a necessary resource for all number theorists and researchers in related fields.

Table of Contents

  • 1. Arbitrary polynomials over an arbitrary field
  • 2. Lacunary polynomials over an arbitrary field
  • 3. Polynomials over an algebraically closed field
  • 4. Polynomials over a finitely generated field
  • 5. Polynomials over a number field
  • 6. Polynomials over a Kroneckerian field
  • Appendices
  • Bibliography.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA46160381
  • ISBN
    • 0521662257
  • LCCN
    99030140
  • Country Code
    uk
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Cambridge
  • Pages/Volumes
    x, 558 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top