Classical microlocal analysis in the space of hyperfunctions

Bibliographic Information

Classical microlocal analysis in the space of hyperfunctions

Seiichiro Wakabayashi

(Lecture notes in mathematics, 1737)

Springer, c2000

Available at  / 78 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. [361]-364) and index

Description and Table of Contents

Description

The book develops "Classical Microlocal Analysis" in the spaces of hyperfunctions and microfunctions, which makes it possible to apply the methods in the distribution category to the studies on partial differential equations in the hyperfunction category. Here "Classical Microlocal Analysis" means that it does not use "Algebraic Analysis." The main tool in the text is, in some sense, integration by parts. The studies on microlocal uniqueness, analytic hypoellipticity and local solvability are reduced to the problems to derive energy estimates (or a priori estimates). The author assumes basic understanding of theory of pseudodifferential operators in the distribution category.

Table of Contents

Chapter 1 Hyperfunctions > 1.1 Function spaces > 1.2 Supports > 1.3 Localization > 1.4 Hyperfunctions > 1.5 Further applications of the Runge approximation theorem >Chapter 2 Basic calculus of Fourier integral operators and pseudodifferential operators > 2.1 Preliminary lemmas > 2.2 Symbol classes > 2.3 Definition of Fourier integral operators > 2.4 Product formula of Fourier integral operators I > 2.5 Product formula of Fourier integral operators II > 2.6 Pseudolocal properties > 2.7 Pseudodifferential operators in B > 2.8 Parametrices of elliptic operators >Chapter 3 Analytic wave front sets and microfunctions > 3.1 Analytic wave front sets > 3.2 Action of Fourier integral operators on wave front sets > 3.3 The boundary values of analytic functions > 3.4 Operations on hyperfunctions > 3.5 Hyperfunctions supported by a half-space > 3.6 Microfunctions > 3.7 Formal analytic symbols >Chapter 4 Microlocal uniqueness > 4.1 Preliminary lemmas > 4.2 General results > 4.3 Microhyperbolic operators > 4.4 Canonical transformation > 4.5 Hypoellipticity >Chapter 5 Local solvability > 5.1 Preliminaries > 5.2 Necessary conditions on local solvability and hypoellipticity > 5.3 Sufficient conditions on local solvability > 5.4 Some examples >Chapter A Proofs of product formulae > A.1 Proof of Theorem 2.4.4 > A.2 Proof of Corollary 2.4.5 > A.3 Proof of Theorem 2.4.6 > A.4 Proof of Corollary 2.4.7 > A.5 Proof of Theorem 2.5.3 >Chapter B A priori estimates > B.1 Grusin operators > B.2 A class of operators with double characteristics

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA47297960
  • ISBN
    • 3540676031
  • Country Code
    gw
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Berlin
  • Pages/Volumes
    viii, 367 p.
  • Size
    24 cm
  • Parent Bibliography ID
Page Top