Introduction to algebraic independence theory

書誌事項

Introduction to algebraic independence theory

Yuri V. Nesterenko, Patrice Philippon (eds.) ; with contributions from, F. Amoroso ... [et al.]

(Lecture notes in mathematics, 1752)

Springer, c2001

大学図書館所蔵 件 / 76

この図書・雑誌をさがす

注記

Bibliography: p. [249]-253

Includes index

内容説明・目次

内容説明

In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject.

目次

Preface List of Contributors Chapter 1. PHI (tau,z) and Transcendence 1. Differential rings and modular forms 2. Explicit differential equations 3. Singular values 4. Transcendence on phi and z Chapter 2. Mahler's conjecture and other transcendence results 1. Introduction 2. A proof of Mahler's conjecture 3. K. Barre's work on modular functions 4. Conjectures about modular and exponential functions Chapter 3. Algebraic independence for values of Ramanujan functions 1. Main theorem and consequences 2. How it can be proved? 3. Constructions of the sequence of polynomials 4. Algebraic fundamentals 5. Another proof of Theorem 1.1 Chapter 4. Some remarks on proofs of algebraic independence 1. Connection with elliptic functions 2. Connection with modular series 3. Another proof of algebraic independence of phi, ephi and TAU ( 1/4) 4. Approximation properties Chapter 5. Elimination multihomogene 1. Introduction 2. Formes eliminantes des ideaux multihomogenes 3. Formes resultantes des ideaux multihomogenes Chapter 6. Diophantine geometry 1. Elimination theory 2. Degree 3. Height 4. Geometric and arithmetic Bezout theorems 5. Distance from a point to a variety 6. Auxiliary results 7. First metric Bezout theorem 8. Second metric Bezout theorem Chapter 7. Geometrie diophantienne multiprojective 1. Introduction 2. Hauteurs 3. Une formule d'intersection 4. Distances Chapter 8. Criteria for algebraic independence 1. Criteria for algebraic independence 2. Mixed Segre- Veronese embeddings 3. Multi-projective criteria for algebraic independence Chapter 9. Upper bounds for (geometric ) Hilbert functions 1. The absolute case (following Kollar) 2. The relative case Chapter 10. Multiplicity estimates for solutions of algebraic differential equations 1. Introduction 2. Reduction of Theorem 1.1 tobounds for polynomial ideals 3. Auxiliary assertions 4. End of the proof of Theorem 2.2 5. D-property for Ramanujan functions Chapter 11. Zero Estimates on Commutative Algebraic Groups 1. Introduction 2. Degree of an intersection on an algebraic group 3. Translation and derivations 4. Statement and proof of the zero estimate Chapter 12. Measures of algebraic independence for Mahler functions 1. Theorems 2. Proof of main theorem 3. Proof of multiplicity estimate Chapter 13. Algebraic Independence in Algebraic Groups. Part 1: Small Transcendence Degrees 1. Introduction 2. General statements 3. Concrete applications 4. A criteria of algebraic independence with multiplicities 5. Introducing a matrix M 6. The rank of the matrix M 7. Analytic upper bound 8. Proof of Proposition 5.1 Chapter 14. Algebraic Independence in Algebraic Groups. Part 2: Large Transcendence Degrees 1. Introduction 2. Conjectures 3. Proofs Chapter 15. Some metric results in Transcendental Numbers Theory 1. Introduction 2. One dimensional results 3. Several dimensional results: 'comparison Theorem' 4. Several dimensional results: proof of Chudnovsky's conjecture Chapter 16. The Hilbert Nullstellensatz, Inequalities for Polynomials, and Algebraic Independence 1. The Hilbert Nullstellensatz and Effectivity 2. Liouville-Lojasiewicz Inequality 3. The Lojasiewicz Inequality Implies the Nullstellensatz 4. Geometric Version of the Nullstellensatz or Irrelevance of the Nullstellen Inequality for the Nullstellensatz 5. Arithmetic Aspects of the Bezout Version 6. Some Algorithmic Aspects of the Bezout Version Bibliography Index

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA50415690
  • ISBN
    • 3540414967
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin ; Tokyo
  • ページ数/冊数
    xiii, 256 p.
  • 大きさ
    24 cm
  • 件名
  • 親書誌ID
ページトップへ