Introduction to topology
Author(s)
Bibliographic Information
Introduction to topology
(Student mathematical library, v. 14)
American Mathematical Society, c2001
- Other Title
-
Введение в топологию
Available at 52 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and indexes
Description and Table of Contents
Description
This English translation of a Russian book presents the basic notions of differential and algebraic topology, which are indispensable for specialists and useful for research mathematicians and theoretical physicists. In particular, ideas and results are introduced related to manifolds, cell spaces, coverings and fibrations, homotopy groups, intersection index, etc. The author notes, 'The lecture note origins of the book left a significant imprint on its style. It contains very few detailed proofs: I tried to give as many illustrations as possible and to show what really occurs in topology, not always explaining why it occurs'. He concludes, 'As a rule, only those proofs (or sketches of proofs) that are interesting per se and have important generalizations are presented'.
Table of Contents
Topological spaces and operations with them Homotopy groups and homotopy equivalence Coverings Cell spaces ($CW$-complexes) Relative homotopy groups and the exact sequence of a pair Fiber bundles Smooth manifolds The degree of a map Homology: Basic definitions and examples main properties of singular homology groups and their computation Homology of cell spaces Morse theory Cohomology and Poincare duality Some applications of homology theory Multiplication in cohomology (and homology) Index of notations Subject index.
by "Nielsen BookData"