Quantization of singular symplectic quotients
著者
書誌事項
Quantization of singular symplectic quotients
(Progress in mathematics, v. 198)
Birkhäuser Verlag, c2001
大学図書館所蔵 全51件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographies
内容説明・目次
内容説明
This is the first exposition of the quantization theory of singular symplectic (Marsden-Weinstein) quotients and their applications to physics. The reader will acquire an introduction to the various techniques used in this area, as well as an overview of the latest research approaches. These involve classical differential and algebraic geometry, as well as operator algebras and noncommutative geometry. Thus one will be amply prepared to follow future developments in this field.
目次
Some comments on the history, theory, and applicationsof symplectic reduction.- Homology of complete symbols and non-commutative geometry.- Cohomology of the Mumford quotient.- Poisson sigma models and symplectic groupoids.- Pseudo-differential operators and deformation quantization.- Singularities and Poisson geometry of certainrepresentation spaces.- Quantized reduction as a tensor product.- Analysis of geometric operator on open manifolds: a groupoid approach.- Smooth structures on stratified spaces.- Singular projective varieties and quantization.- Poisson structure and quantization of Chern-Simons theory.- Combinatorial quantization of Euclidean gravityin three dimensions.- The Yang-Mills measure and symplectic structureover spaces of connections.
「Nielsen BookData」 より