Index theory for symplectic paths with applications
著者
書誌事項
Index theory for symplectic paths with applications
(Progress in mathematics, v. 207)
Birkhäuser, c2002
大学図書館所蔵 件 / 全56件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographies (p. [361]-373) and index
内容説明・目次
内容説明
This book gives an introduction to index theory for symplectic matrix paths and its iteration theory, as well as applications to periodic solution problems of nonlinear Hamiltonian systems. The applications of these concepts yield new approaches to some outstanding problems. Particular attention is given to the minimal period solution problem of Hamiltonian systems and the existence of infinitely many periodic points of the Poincare map of Lagrangian systems on tori.
目次
I The Symplectic Group Sp(2n).- 1 Algebraic Aspects.- 1.1 Symplectic matrices.- 1.2 Symplectic spaces.- 1.3 Eigenvalues of symplectic matrices.- 1.4 Normal forms for the eigenvalue 1.- 1.5 Normal forms for the eigenvalue ?1.- 1.6 Normal forms for eigenvalues in U?R.- 1.7 Normal forms for eigenvalues outside U.- 1.8 Basic normal forms.- 1.9 Perturbations basic normal forms.- 2 Topological Aspects.- 2.1 Structures of Sp(2) and its subsets.- 2.2 The global structure of Sp(2n,R).- 2.3 Hyperbolic symplectic matrix set.- 2.4 Structure of regular sets.- 2.5 Structures of singular sets.- 2.6 Transversality of rotation paths.- 2.7 Orientability of M?,(2n) in Sp(2n).- II The Variational Method.- 3 Hamiltonian Systems and Canonical Transformations.- 3.1 Canonical transformations.- 3.2 Generating functions.- 4 The Variational Functional.- 4.1 The Galerkin approximation.- 4.2 The L2-Variational Structure.- 4.3 The saddle point reduction.- 4.4 The dimension theorem on kernels.- 4.5 Certain estimates.- III Index Theory.- 5 Index Functions for Symplectic Paths.- 5.1 Paths in Sp(2).- 5.2 Non-degenerate paths in Sp(2n).- 5.3 Index properties of non-degenerate paths.- 5.4 Perturbations of degenerate paths.- 6 Properties of Index Functions.- 6.1 Index functions and Morse indices.- 6.2 An axiom approach and further properties.- 7 Relations with other Morse Indices.- 7.1 The Galerkin approximation.- 7.2 Second order Hamiltonian systems.- 7.3 Lagrangian systems.- IV Iteration Theory.- 8 Precise Iteration Formulae.- 8.1 Paths in Sp(2).- 8.2 Hyperbolic and elliptic paths.- 8.3 General symplectic paths.- 9 Bott-type Iteration Formulae.- 9.1 Splitting numbers.- 9.2 Bott-type formulae.- 9.3 Abstract precise iteration formulae.- 10 Iteration Inequalities.- 10.1 Estimates via mean index and initial index.- 10.2 Successive estimates.- 10.3 Controlling iteration numbers via indices.- 11 The Common Index Jump Theorem.- 11.1 A common selection theorem.- 11.2 The common index jump theorem.- 12 Index Iteration Theory for Closed Geodesics.- 12.1 Morse index theory.- 12.2 Splitting numbers.- V Applications.- 13 The Rabinowitz Conjecture.- 13.1 Minimax principle preparations.- 13.2 Controlling the minimal period via indices.- 13.3 Asymptotically linear Hamiltonian systems.- 13.4 Superquadratic Hamiltonian systems.- 13.5 Second order systems.- 13.6 Subharmonics.- 13.7 Notes and comments.- 14 Periodic Lagrangian Orbits on Tori.- 14.1 Critical module preparations.- 14.2 The finite energy homology theory.- 14.3 Critical modules and isomorphisms.- 14.4 Global homological injectivity.- 14.5 Global homological vanishing.- 14.6 Notes and comments.- 15 Closed Characteristics on Convex Hypersurfaces.- 15.1 Index theorem for dual action principle.- 15.2 Variational properties.- 15.3 Critical orbits and index jumps.- 15.4 Existence and multiplicity.- 15.5 Stability results.- 15.6 Symmetric hypersurfaces.- 15.7 Notes and comments.
「Nielsen BookData」 より