Borcherds products on O(2,l) and Chern classes of Heegner divisors

書誌事項

Borcherds products on O(2,l) and Chern classes of Heegner divisors

Jan H. Bruinier

(Lecture notes in mathematics, 1780)

Springer, c2002

大学図書館所蔵 件 / 74

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [141]-144) and index

内容説明・目次

内容説明

Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. The fact that the zeros and poles of Borcherds products are explicitly given in terms of Heegner divisors makes them interesting for geometric and arithmetic applications. In the present text the Borcherds' construction is extended to Maass wave forms and is used to study the Chern classes of Heegner divisors. A converse theorem for the lifting is proved.

目次

Introduction.- Vector valued modular forms for the metaplectic group. The Weil representation. Poincare series and Einstein series. Non-holomorphic Poincare series of negative weight.- The regularized theta lift. Siegel theta functions. The theta integral. Unfolding against F. Unfolding against theta.- The Fourier theta lift. Lorentzian lattices. Lattices of signature (2,l). Modular forms on orthogonal groups. Borcherds products.- Some Riemann geometry on O(2,l). The invariant Laplacian. Reduction theory and L^p-estimates. Modular forms with zeros and poles on Heegner divisors.- Chern classes of Heegner divisors. A lifting into cohomology. Modular forms with zeros and poles on Heegner divisors II.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA5647245X
  • ISBN
    • 3540433201
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin
  • ページ数/冊数
    viii, 152 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ