Moment maps, cobordisms, and Hamiltonian group actions
著者
書誌事項
Moment maps, cobordisms, and Hamiltonian group actions
(Mathematical surveys and monographs, v. 98)
American Mathematical Society, c2002
大学図書館所蔵 全51件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical reference (p. 339-348) and index
内容説明・目次
内容説明
This research monograph presents many new results in a rapidly developing area of great current interest. Guillemin, Ginzburg, and Karshon show that the underlying topological thread in the computation of invariants of G-manifolds is a consequence of a linearization theorem involving equivariant cobordisms. The book incorporates a novel approach and showcases exciting new research. During the last 20 years, 'localization' has been one of the dominant themes in the area of equivariant differential geometry. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the 'quantization commutes with reduction' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds.A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an 'abstract moment map'. This is a natural and important generalization of the notion of a moment map occurring in the theory of Hamiltonian dynamics. The book contains a number of appendices that include introductions to proper group-actions on manifolds, equivariant cohomology, Spin${^\mathrm{c}}$-structures, and stable complex structures. It is geared toward graduate students and research mathematicians interested in differential geometry. It is also suitable for topologists, Lie theorists, combinatorists, and theoretical physicists. Prerequisite is some expertise in calculus on manifolds and basic graduate-level differential geometry.
目次
Introduction Part 1. Cobordism: Hamiltonian cobordism Abstract moment maps The linearization theorem Reduction and applications Part 2. Quantization: Geometric quantization The quantum version of the linearization theorem Quantization commutes with reduction Part 3. Appendices: Signs and normalization conventions Proper actions of Lie groups Equivariant cohomology Stable complex and Spin$^{\mathrm{c}}$structures Assignments and abstract moment maps Assignment cohomology Non-degenerate abstract moment maps Characteristic numbers, non-degenerate cobordisms, and non-virtual quantization The Kawasaki Riemann-Roch formula Cobordism invariance of the index of a transversally elliptic operator Bibliography Index.
「Nielsen BookData」 より