Permutation group algorithms
Author(s)
Bibliographic Information
Permutation group algorithms
(Cambridge tracts in mathematics, 152)
Cambridge University Press, 2003
- : hbk
Available at 43 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: hbkSER||14||103009652
Note
Includes bibliographical references (p. 254-261) and index
There are also published in 2002. (Depending on the publisher's printing mistake.)
Description and Table of Contents
Description
Permutation group algorithms are one of the workhorses of symbolic algebra systems computing with groups. They played an indispensable role in the proof of many deep results, including the construction and study of sporadic finite simple groups. This book describes the theory behind permutation group algorithms, including developments based on the classification of finite simple groups. Rigorous complexity estimates, implementation hints, and advanced exercises are included throughout. The central theme is the description of nearly linear time algorithms, which are extremely fast both in terms of asymptotic analysis and of practical running time. A significant part of the permutation group library of the computational group algebra system GAP is based on nearly linear time algorithms. The book fills a significant gap in the symbolic computation literature. It is recommended for everyone interested in using computers in group theory, and is suitable for advanced graduate courses.
Table of Contents
- 1. Introduction
- 2. Black-box groups
- 3. Permutation groups: a complexity overview
- 4. Bases and strong generating sets
- 5. Further low-level algorithms
- 6. A library of nearly linear time algorithms
- 7. Solvable permutation groups
- 8. Strong generating tests
- 9. Backtrack methods
- 10. Large-base groups.
by "Nielsen BookData"