Galois groups and fundamental groups
著者
書誌事項
Galois groups and fundamental groups
(Mathematical Sciences Research Institute publications, 41)
Cambridge University Press, c2003
- : hardback
大学図書館所蔵 全44件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
This book contains eight expository articles by well-known authors of the theory of Galois groups and fundamental groups. They focus on presenting developments, avoiding classical aspects which have already been described at length in the standard literature. The volume grew from the special semester held at the MSRI in Berkeley in 1999 and many of the results are due to work accomplished during that program. Among the subjects covered are elliptic surfaces, Grothendieck's anabelian conjecture, fundamental groups of curves and differential Galois theory in positive characteristic. Although the articles contain fresh results, the authors have striven to make them as introductory as possible, making them accessible to graduate students as well as researchers in algebraic geometry and number theory. The volume also contains a lengthy overview by Leila Schneps that sets the individual articles into the broader context of contemporary research in Galois groups.
目次
- Introduction
- 1. Monodromy groups of coverings of curves Robert Guralnik
- 2. On the tame fundamental groups of curves over algebraically closed fields of characteristic > 0 Akio Tamagawa
- 3. On the specialization homomorphism of fundamental groups of curves in positive characteristic Florian Pop and Mohamed Saidi
- 4. Topics surrounding the anabelian geometry of hyperbolic curves Shinichi Mochizuki
- 5. Monodromy of elliptic surfaces Fedor Bogomolov and Yuri Tschinkel
- 6. Tannakian fundamental groups associated to Galois groups Richard Hain and Makoto Matsumoto
- 7. Special loci in moduli spaces of curves Leila Schneps
- 8. Cellulation of compactified Hurwitz spaces Michel Imbert
- 9. Patching and Galois theory David Harbater
- 10. Constructive differential Galois theory B. Heinrich Matzat and Marius van der Put.
「Nielsen BookData」 より