Stable modules and the D(2)-problem
著者
書誌事項
Stable modules and the D(2)-problem
(London Mathematical Society lecture note series, 301)
Cambridge University Press, 2003
- : pbk
大学図書館所蔵 全43件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 262-265) and index
内容説明・目次
内容説明
This 2003 book is concerned with two fundamental problems in low-dimensional topology. Firstly, the D(2)-problem, which asks whether cohomology detects dimension, and secondly the realization problem, which asks whether every algebraic 2-complex is geometrically realizable. The author shows that for a large class of fundamental groups these problems are equivalent. Moreover, in the case of finite groups, Professor Johnson develops general methods and gives complete solutions in a number of cases. In particular, he presents a complete treatment of Yoneda extension theory from the viewpoint of derived objects and proves that for groups of period four, two-dimensional homotopy types are parametrized by isomorphism classes of projective modules. This book is carefully written with an eye on the wider context and as such is suitable for graduate students wanting to learn low-dimensional homotopy theory as well as established researchers in the field.
目次
- 1. Orders in semisimple algebras
- 2. Representation of finite groups
- 3. Stable modules and cancellation theorems
- 4. Relative homological algebra
- 5. The derived category of a finite group
- 6. k-invariants
- 7. Groups of periodic cohomology
- 8. Algebraic homotopy theory
- 9. Stability theorems
- 10. The D(2)-problem
- 11. Poincare 3-complexes.
「Nielsen BookData」 より