Tame geometry with application in smooth analysis

著者

    • Yomdin, Yosef
    • Comte, Georges

書誌事項

Tame geometry with application in smooth analysis

Yosef Yomdin, Georges Comte

(Lecture notes in mathematics, 1834)

Springer-Verlag, c2004

大学図書館所蔵 件 / 63

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [173]-186)

内容説明・目次

内容説明

The Morse-Sard theorem is a rather subtle result and the interplay between the high-order analytic structure of the mappings involved and their geometry rarely becomes apparent. The main reason is that the classical Morse-Sard theorem is basically qualitative. This volume gives a proof and also an "explanation" of the quantitative Morse-Sard theorem and related results, beginning with the study of polynomial (or tame) mappings. The quantitative questions, answered by a combination of the methods of real semialgebraic and tame geometry and integral geometry, turn out to be nontrivial and highly productive. The important advantage of this approach is that it allows the separation of the role of high differentiability and that of algebraic geometry in a smooth setting: all the geometrically relevant phenomena appear already for polynomial mappings. The geometric properties obtained are "stable with respect to approximation", and can be imposed on smooth functions via polynomial approximation.

目次

Preface.- Introduction and Content.- Entropy.- Multidimensional Variations.- Semialgebraic and Tame Sets.- Some Exterior Algebra.- Behavior of Variations under Polynomial Mappings.- Quantitative Transversality and Cuspidal Values for Polynomial Mappings.- Mappings of Finite Smoothness.- Some Applications and Related Topics.- Glossary.- References.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA65822086
  • ISBN
    • 3540206124
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin ; Tokyo
  • ページ数/冊数
    viii, 186 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ