Tame geometry with application in smooth analysis
著者
書誌事項
Tame geometry with application in smooth analysis
(Lecture notes in mathematics, 1834)
Springer-Verlag, c2004
大学図書館所蔵 件 / 全63件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. [173]-186)
内容説明・目次
内容説明
The Morse-Sard theorem is a rather subtle result and the interplay between the high-order analytic structure of the mappings involved and their geometry rarely becomes apparent. The main reason is that the classical Morse-Sard theorem is basically qualitative. This volume gives a proof and also an "explanation" of the quantitative Morse-Sard theorem and related results, beginning with the study of polynomial (or tame) mappings. The quantitative questions, answered by a combination of the methods of real semialgebraic and tame geometry and integral geometry, turn out to be nontrivial and highly productive. The important advantage of this approach is that it allows the separation of the role of high differentiability and that of algebraic geometry in a smooth setting: all the geometrically relevant phenomena appear already for polynomial mappings. The geometric properties obtained are "stable with respect to approximation", and can be imposed on smooth functions via polynomial approximation.
目次
Preface.- Introduction and Content.- Entropy.- Multidimensional Variations.- Semialgebraic and Tame Sets.- Some Exterior Algebra.- Behavior of Variations under Polynomial Mappings.- Quantitative Transversality and Cuspidal Values for Polynomial Mappings.- Mappings of Finite Smoothness.- Some Applications and Related Topics.- Glossary.- References.
「Nielsen BookData」 より