J-holomorphic curves and symplectic topology
Author(s)
Bibliographic Information
J-holomorphic curves and symplectic topology
(Colloquium publications / American Mathematical Society, v. 52)
American Mathematical Society, c2004
Available at 45 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references (p. 643-653) and index
Description and Table of Contents
Description
The theory of $J$-holomorphic curves has been of great importance since its introduction by Gromov in 1985. Its mathematical applications include many key results in symplectic topology. It was also one of the main inspirations for the creation of Floer homology. In mathematical physics, it provides a natural context in which to define Gromov-Witten invariants and quantum cohomology-two important ingredients of the mirror symmetry conjecture. This book establishes the fundamental theorems of the subject in full and rigorous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of the associativity of quantum multiplication in the semipositive case. The book can also serve as an introduction to current work in symplectic topology: There are two long chapters on applications, one concentrating on classical results in symplectic topology and the other concerned with quantum cohomology. The last chapter sketches some recent developments in Floer theory.
The five appendices of the book provide necessary background related to the classical theory of linear elliptic operators, Fredholm theory, Sobolev spaces, as well as a discussion of the moduli space of genus zero stable curves and a proof of the positivity of intersections of $J$-holomorphic curves in four dimensional manifolds. The book is suitable for graduate students and researchers interested in symplectic geometry and its applications, especially in the theory of Gromov-Witten invariants.
Table of Contents
Introduction $J$-holomorphic curves Moduli spaces and transversality Compactness Stable maps Moduli spaces of stable maps Gromov-Witten invariants Hamiltonian perturbations Applications in symplectic topology Gluing Quantum cohomology Floer cohomology Fredholm theory Elliptic regularity The Riemann-Roch theorem Stable curves of genus zero Singularities and intersections (written with Laurent Lazzarini) Bibliography List of symbols Index.
by "Nielsen BookData"