The principle of least action in geometry and dynamics

書誌事項

The principle of least action in geometry and dynamics

Karl Friedrich Siburg

(Lecture notes in mathematics, 1844)

Springer, c2004

大学図書館所蔵 件 / 63

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [121]-125) and index

内容説明・目次

内容説明

New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather's minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.

目次

Aubry-Mather Theory.- Mather-Mane Theory.- The Minimal Action and Convex Billiards.- The Minimal Action Near Fixed Points and Invariant Tori.- The Minimal Action and Hofer's Geometry.- The Minimal Action and Symplectic Geometry.- References.- Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BA67388559
  • ISBN
    • 3540219447
  • LCCN
    2004104313
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin ; Tokyo
  • ページ数/冊数
    xii, 128 p.
  • 大きさ
    24 cm
  • 親書誌ID
ページトップへ