The principle of least action in geometry and dynamics
著者
書誌事項
The principle of least action in geometry and dynamics
(Lecture notes in mathematics, 1844)
Springer, c2004
大学図書館所蔵 件 / 全63件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. [121]-125) and index
内容説明・目次
内容説明
New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather's minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.
目次
Aubry-Mather Theory.- Mather-Mane Theory.- The Minimal Action and Convex Billiards.- The Minimal Action Near Fixed Points and Invariant Tori.- The Minimal Action and Hofer's Geometry.- The Minimal Action and Symplectic Geometry.- References.- Index.
「Nielsen BookData」 より