Spectral generalizations of line graphs : on graphs with least eigenvalue -2
著者
書誌事項
Spectral generalizations of line graphs : on graphs with least eigenvalue -2
(London Mathematical Society lecture note series, 314)
Cambridge University Press, 2004
- : pbk
大学図書館所蔵 件 / 全46件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 281-294) and index
内容説明・目次
内容説明
Line graphs have the property that their least eigenvalue is greater than or equal to -2, a property shared by generalized line graphs and a finite number of so-called exceptional graphs. This book deals with all these families of graphs in the context of their spectral properties. The authors discuss the three principal techniques that have been employed, namely 'forbidden subgraphs', 'root systems' and 'star complements'. They bring together the major results in the area, including the recent construction of all the maximal exceptional graphs. Technical descriptions of these graphs are included in the appendices, while the bibliography provides over 250 references. This will be an important resource for all researchers with an interest in algebraic graph theory.
目次
- 1. Introduction
- 2. Forbidden subgraphs
- 3. Root systems
- 4. Regular graphs
- 5. Star complements
- 6. The Maximal exceptional graphs
- 7. Miscellaneous results.
「Nielsen BookData」 より