Unsolved problems in number theory
著者
書誌事項
Unsolved problems in number theory
(Problem books in mathematics / edited by K. Bencsáth and P.R. Halmos)
Springer, c2004
3rd ed
大学図書館所蔵 全35件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and indexes
With 18 figures
内容説明・目次
内容説明
Mathematics is kept alive by the appearance of new, unsolved problems. This book provides a steady supply of easily understood, if not easily solved, problems that can be considered in varying depths by mathematicians at all levels of mathematical maturity. This new edition features lists of references to OEIS, Neal Sloane's Online Encyclopedia of Integer Sequences, at the end of several of the sections.
目次
Preface to the First Edition
Preface to the Second Edition
Preface to the Third Edition
Glossary of Symbols
A. Prime Numbers.
A1. Prime values of quadratic functions.
A2. Primes connected with factorials.
A3. Mersenne primes. Repunits. Fermat numbers. Primes of shape k * 2n + 1.
A4. The prime number race.
A5. Arithmetic progressions of primes.
A6. Consecutive primes in A.P.
A7. Cunningham chains.
A8. Gaps between primes. Twin primes.
A9. Patterns of primes.
A10. Gilbreath's conjecture.
A11. Increasing and decreasing gaps.
A12. Pseudoprimes. Euler pseudoprimes. Strong pseudoprimes.
A13. Carmichael numbers.
A14. 'Good' primes and the prime number graph.
A15. Congruent products of consecutive numbers.
A16. Gaussian primes. Eisenstein-Jacobi primes.
A17. Formulas for primes.
A18. The Erd1/2os-Selfridge classi.cation of primes.
A19. Values of n making n - 2k prime. Odd numbers not of the form +/-pa +/- 2b.
A20. Symmetric and asymmetric primes. B. Divisibility
B1. Perfect numbers.
B2. Almost perfect, quasi-perfect, pseudoperfect, harmonic, weird, multiperfect and hyperperfect numbers.
B3. Unitary perfect numbers.
B4. Amicable numbers.
B5. Quasi-amicable or betrothed numbers.
B6. Aliquot sequences.
B7. Aliquot cycles. Sociable numbers.
B8. Unitary aliquot sequences.
B9. Superperfect numbers.
B10. Untouchable numbers.
B11. Solutions of mo(m) = no(n).
B12. Analogs with d(n), ok(n).
B13. Solutions of o(n) = o(n + 1).
B14. Some irrational series.
B15. Solutions of o(q) + o(r) = o(q + r).
B16. Powerful numbers. Squarefree numbers.
B17. Exponential-perfect numbers
B18. Solutions of d(n) = d(n + 1).
B19. (m, n + 1) and (m+1, n) with same set of prime factors. The abc-conjecture. B20. Cullen and Woodallnumbers.
B21. k * 2n + 1 composite for all n.
B22. Factorial n as the product of n large factors.
B23. Equal products of factorials.
B24. The largest set with no member dividing two others.
B25. Equal sums of geometric progressions with prime ratios.
B26. Densest set with no l pairwise coprime.
B27. The number of prime factors of n + k which don't divide n + i, 0 !UE i < k.
B28. Consecutive numbers with distinct prime factors.
B29. Is x determined by the prime divisors of x + 1, x + 2,. . ., x + k?
B30. A small set whose product is square.
B31. Binomial coeffcients.
B32. Grimm's conjecture.
B33. Largest divisor of a binomial coeffcient.
B34. If there's an i such that n - i divides _nk_.
B35. Products of consecutive numbers with the same prime factors.
B36. Euler's totient function.
B37. Does oe(n) properly divide n - 1?
B38. Solutions of oe(m) = o(n).
B39. Carmichael's conjecture.
B40. Gaps between totatives.
B41. Iterations of oe and o.
B42. Behavior of oe(o(n)) and o(oe(n)).
B43. Alternating sums of factorials.
B44. Sums of factorials.
B45. Euler numbers.
B46. The largest prime factor of n.
B47. When does 2a -2b divide na - nb?
B48. Products taken over primes.
B49. Smith numbers. C. Additive Number Theory
C1. Goldbach's conjecture.
C2. Sums of consecutive primes.
C3. Lucky numbers.
C4. Ulam numbers.
C5. Sums determining members of a set.
C6. Addition chains. Brauer chains. Hansen chains.
C7. The money-changing problem.
C8. Sets with distinct sums of subsets.
C9. Packing sums of pairs.
C10. Modular di.erence sets and error correcting codes.
C11. Three-subsets with distinct sums.
C12. The postage stamp problem.
C13. The corresponding modular covering problem. Harmonious labelling of graphs. C14.
「Nielsen BookData」 より