Geometric methods in algebra and number theory
著者
書誌事項
Geometric methods in algebra and number theory
(Progress in mathematics, v. 235)
Birkhäuser, c2005
大学図書館所蔵 件 / 全50件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references
内容説明・目次
内容説明
* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory
* The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry
* Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry
目次
* Preface
* Bauer/Catanese/Grunewald: Beauville surfaces without real structures
* Bogomolov/Tschinkel: Couniformization of curves over number fields
* Budur: On the V-filtration of D-modules
* Chai: Hecke orbits on Siegel modular varieties
* Cluckers/Loeser: Ax-Kochen-Ersov Theorems for p-adic integrals and motivic integration
* De Concini/Procesi: Nested sets and Jeffrey-Kirwan residues
* Ellenberg/Venkatesh: Counting extensions of function fields with bounded discriminant and specified Galois group
* Hassett: Classical and minimal models of the moduli space of curves of genus two
* Hausel: Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve
* Pineiro/Szpiro/Tucker: Mahler measure for dynamical systems on P1 and intersection theory on a singular arithmetic surface
* Pink: A Combination of the Conjecture of Mordell-Lang and Andre-Oort
* Spitzweck: Motivic approach to limit sheaves
* Swinnerton-Dyer: Counting points on cubic surfaces, II
* Tamvakis: Quantum cohomology of isotropic Grassmannians
* Zarhin: Endomorphism algebras of superelliptic Jacobians
「Nielsen BookData」 より