Analyzable functions and applications : International Workshop on Analyzable Functions and Applications, June 17-21, 2002, International Centre for Mathematical Sciences, Edinburgh, Scotland
著者
書誌事項
Analyzable functions and applications : International Workshop on Analyzable Functions and Applications, June 17-21, 2002, International Centre for Mathematical Sciences, Edinburgh, Scotland
(Contemporary mathematics, 373)
American Mathematical Society, c2005
大学図書館所蔵 全40件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
The theory of analyzable functions is a technique used to study a wide class of asymptotic expansion methods and their applications in analysis, difference and differential equations, partial differential equations and other areas of mathematics. Key ideas in the theory of analyzable functions were laid out by Euler, Cauchy, Stokes, Hardy, E. Borel, and others. Then in the early 1980s, this theory took a great leap forward with the work of J. Ecalle.Similar techniques and concepts in analysis, logic, applied mathematics and surreal number theory emerged at essentially the same time and developed rapidly through the 1990s. The links among various approaches soon became apparent and this body of ideas is now recognized as a field of its own with numerous applications. This volume stemmed from the International Workshop on Analyzable Functions and Applications held in Edinburgh (Scotland). The contributed articles, written by many leading experts, are suitable for graduate students and researchers interested in asymptotic methods.
目次
A singularly perturbed Riccati equation by S. Ait-Mokhtar On global aspects of exact WKB analysis of operators admitting infinitely many phases by T. Aoki, T. Kawai, T. Koike, and Y. Takei Asymptotic differential algebra by M. Aschenbrenner and L. van den Dries Formally well-posed Cauchy problems for linear partial differential equations with constant coefficients by W. Balser and V. Kostov Non-oscillating integral curves and o-minimal structures by F. Blais, R. Moussu, and J.-P. Rolin Asymptotics and singularities for a class of difference equations by B. Braaksma and R. Kuik Topological construction of transseries and introduction to generalized Borel summability by O. Costin Addendum to the hyperasymptotics for multidimensional Laplace integrals by E. Delabaere Higher-order terms for the de Moivre-Laplace theorem by F. Diener and M. Diener Twisted resurgence monomials and canonical-spherical synthesis of local objects by J. Ecalle Matching and singularities of canard values by A. Fruchard and E. Matzinger On the renormalization method of Chen, Goldenfeld, and Oono by B. Mudavanhu and R. E. O'Malley, Jr. Generalized surreal numbers by S. P. Norton Two examples of resurgence by C. Olive, D. Sauzin, and T. M. Seara.
「Nielsen BookData」 より