Feynman's thesis : a new approach to quantum theory
著者
書誌事項
Feynman's thesis : a new approach to quantum theory
World Scientific, c1942
- : pbk
大学図書館所蔵 全17件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
収録内容
- The principle of least action in quantum mechanics / R. P. Feynman
- Space-time approach to non-relativistic quantum mechanics / R. P. Feynman
内容説明・目次
内容説明
Richard Feynman's never previously published doctoral thesis formed the heart of much of his brilliant and profound work in theoretical physics. Entitled "The Principle of Least Action in Quantum Mechanics,' its original motive was to quantize the classical action-at-a-distance electrodynamics. Because that theory adopted an overall space-time viewpoint, the classical Hamiltonian approach used in the conventional formulations of quantum theory could not be used, so Feynman turned to the Lagrangian function and the principle of least action as his points of departure.The result was the path integral approach, which satisfied - and transcended - its original motivation, and has enjoyed great success in renormalized quantum field theory, including the derivation of the ubiquitous Feynman diagrams for elementary particles. Path integrals have many other applications, including atomic, molecular, and nuclear scattering, statistical mechanics, quantum liquids and solids, Brownian motion, and noise theory. It also sheds new light on fundamental issues like the interpretation of quantum theory because of its new overall space-time viewpoint.The present volume includes Feynman's Princeton thesis, the related review article "Space-Time Approach to Non-Relativistic Quantum Mechanics" [Reviews of Modern Physics 20 (1948), 367-387], Paul Dirac's seminal paper "The Lagrangian in Quantum Mechanics'' [Physikalische Zeitschrift der Sowjetunion, Band 3, Heft 1 (1933)], and an introduction by Laurie M Brown.
目次
# Least Action in Classical Mechanics: # The Concept of Functional # The Principle of Least Action # Conservation of Energy. Constants of the Motion # Particles Interacting Through an Intermediate Oscillator # Least Action in Quantum Mechanics: # The Lagrangian in Quantum Mechanics # The Calculation of Matrix Elements in the Language of a Lagrangian # The Equations of Motion in Lagrangian Form # Translation to the Ordinary Notation of Quantum Mechanics # The Generalization to Any Action Function # Conservation of Energy. Constants of the Motion # The Role of the Wave Function # Transition Probabilities # Expectation Values for Observables # Application to the Forced Harmonic Oscillator # Particles Interacting Through an Intermediate Oscillator # Space-Time Approach to Non-Relativistic Quantum Mechanics # The Lagrangian in Quantum Mechanics
「Nielsen BookData」 より