The Wulff crystal in Ising and percolation models
著者
書誌事項
The Wulff crystal in Ising and percolation models
(Lecture notes in mathematics, 1878 . Ecole d'eté de probabilités de Saint-Flour / editor,
Springer, c2006
- タイトル別名
-
The Wulff crystal in Ising and percolation models, St. Flour 2004
大学図書館所蔵 件 / 全60件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes in bibliographical references (p. [253]-258) and index
"ISSN Ecole d'été de probabilités de St-Flour, print edition: 0721-5363"--T.p. verso
内容説明・目次
内容説明
This volume is a synopsis of recent works aiming at a mathematically rigorous justification of the phase coexistence phenomenon, starting from a microscopic model. It is intended to be self-contained. Those proofs that can be found only in research papers have been included, whereas results for which the proofs can be found in classical textbooks are only quoted.
目次
Phase coexistence and subadditivity.- Presentation of the models.- Ising model.- Bernoulli percolation.- FK or random cluster model.- Main results.- The Wulff crystal.- Large deviation principles.- Large deviation theory.- Surface large deviation principles.- Volume large deviations.- Fundamental probabilistic estimates.- Coarse graining.- Decoupling.- Surface tension.- Interface estimate.- Basic geometric tools.- Sets of finite perimeter.- Surface energy.- The Wulff theorem.- Final steps of the proofs.- LDP for the cluster shapes.- Enhanced upper bound.- LDP for FK percolation.- LDP for Ising.
「Nielsen BookData」 より