Central simple algebras and galois cohomology
Author(s)
Bibliographic Information
Central simple algebras and galois cohomology
(Cambridge studies in advanced mathematics, 101)
Cambridge University Press, 2006
- : hardback
Available at 49 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: hardbackS||CSAM||10106045219
Note
Includes bibliographical references (p. [323]-338) and index
Description and Table of Contents
Description
This book is the first comprehensive, modern introduction to the theory of central simple algebras over arbitrary fields. Starting from the basics, it reaches such advanced results as the Merkurjev-Suslin theorem. This theorem is both the culmination of work initiated by Brauer, Noether, Hasse and Albert and the starting point of current research in motivic cohomology theory by Voevodsky, Suslin, Rost and others. Assuming only a solid background in algebra, but no homological algebra, the book covers the basic theory of central simple algebras, methods of Galois descent and Galois cohomology, Severi-Brauer varieties, residue maps and, finally, Milnor K-theory and K-cohomology. The last chapter rounds off the theory by presenting the results in positive characteristic, including the theorem of Bloch-Gabber-Kato. The book is suitable as a textbook for graduate students and as a reference for researchers working in algebra, algebraic geometry or K-theory.
Table of Contents
- 1. Quaternion algebras
- 2. Central simple algebras and Galois descent
- 3. Techniques from group cohomology
- 4. The cohomological Brauer group
- 5. Severi-Brauer varieties
- 6. Residue maps
- 7. Milnor K-theory
- 8. The Merkurjev-Suslin theorem
- 9. Symbols in positive characteristic
- Appendix: A breviary of algebraic geometry
- References
- Index.
by "Nielsen BookData"