Hilbert's tenth problem : diophantine classes and extensions to global fields
著者
書誌事項
Hilbert's tenth problem : diophantine classes and extensions to global fields
(New mathematical monographs, 7)
Cambridge University Press, c2007
- : hardback
大学図書館所蔵 全27件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 310-316) and index
内容説明・目次
内容説明
In the late sixties Matiyasevich, building on the work of Davis, Putnam and Robinson, showed that there was no algorithm to determine whether a polynomial equation in several variables and with integer coefficients has integer solutions. Hilbert gave finding such an algorithm as problem number ten on a list he presented at an international congress of mathematicians in 1900. Thus the problem, which has become known as Hilbert's Tenth Problem, was shown to be unsolvable. This book presents an account of results extending Hilbert's Tenth Problem to integrally closed subrings of global fields including, in the function field case, the fields themselves. While written from the point of view of Algebraic Number Theory, the book includes chapters on Mazur's conjectures on topology of rational points and Poonen's elliptic curve method for constructing a Diophatine model of rational integers over a 'very large' subring of the field of rational numbers.
目次
- 1. Introduction
- 2. Diophantine classes: definition and basic facts
- 3. Diophantine equivalence and diophantine decidability
- 4. Integrality at finitely many primes and divisibility of order at infinitely many primes
- 5. Bound equations for number fields and their consequences
- 6. Units of rings of W-integers of norm 1
- 7. Diophantine classes over number fields
- 8. Diophantine undecidability of function fields
- 9. Bounds for function fields
- 10. Diophantine classes over function fields
- 11. Mazur's conjectures and their consequences
- 12. Results of Poonen
- 13. Beyond global fields
- A. Recursion theory
- B. Number theory
- Bibliography
- Index.
「Nielsen BookData」 より