Representation theory and higher algebraic K-theory
著者
書誌事項
Representation theory and higher algebraic K-theory
(Monographs and textbooks in pure and applied mathematics, 287)
Chapman and Hall/CRC, c2007
大学図書館所蔵 件 / 全31件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 423-436) and index
内容説明・目次
内容説明
Representation Theory and Higher Algebraic K-Theory is the first book to present higher algebraic K-theory of orders and group rings as well as characterize higher algebraic K-theory as Mackey functors that lead to equivariant higher algebraic K-theory and their relative generalizations. Thus, this book makes computations of higher K-theory of group rings more accessible and provides novel techniques for the computations of higher K-theory of finite and some infinite groups.
Authored by a premier authority in the field, the book begins with a careful review of classical K-theory, including clear definitions, examples, and important classical results. Emphasizing the practical value of the usually abstract topological constructions, the author systematically discusses higher algebraic K-theory of exact, symmetric monoidal, and Waldhausen categories with applications to orders and group rings and proves numerous results. He also defines profinite higher K- and G-theory of exact categories, orders, and group rings. Providing new insights into classical results and opening avenues for further applications, the book then uses representation-theoretic techniques-especially induction theory-to examine equivariant higher algebraic K-theory, their relative generalizations, and equivariant homology theories for discrete group actions. The final chapter unifies Farrell and Baum-Connes isomorphism conjectures through Davis-Luck assembly maps.
目次
Review of Classical Algebraic K-Theory and Representation Theory. Higher Algebraic K-Theory and Integral Representations. Mackey Functors, Equivariant Higher Algebraic K-Theory, and Equivariant Homology Theories.
「Nielsen BookData」 より