Real analysis : a constructive approach
著者
書誌事項
Real analysis : a constructive approach
(Pure and applied mathematics)
Wiley-Interscience, c2007
大学図書館所蔵 全13件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 295) and index
内容説明・目次
内容説明
A unique approach to analysis that lets you apply mathematics across a range of subjects
This innovative text sets forth a thoroughly rigorous modern account of the theoretical underpinnings of calculus: continuity, differentiability, and convergence. Using a constructive approach, every proof of every result is direct and ultimately computationally verifiable. In particular, existence is never established by showing that the assumption of non-existence leads to a contradiction. The ultimate consequence of this method is that it makes sense not just to math majors but also to students from all branches of the sciences.
The text begins with a construction of the real numbers beginning with the rationals, using interval arithmetic. This introduces readers to the reasoning and proof-writing skills necessary for doing and communicating mathematics, and it sets the foundation for the rest of the text, which includes:
Early use of the Completeness Theorem to prove a helpful Inverse Function Theorem
Sequences, limits and series, and the careful derivation of formulas and estimates for important functions
Emphasis on uniform continuity and its consequences, such as boundedness and the extension of uniformly continuous functions from dense subsets
Construction of the Riemann integral for functions uniformly continuous on an interval, and its extension to improper integrals
Differentiation, emphasizing the derivative as a function rather than a pointwise limit
Properties of sequences and series of continuous and differentiable functions
Fourier series and an introduction to more advanced ideas in functional analysis
Examples throughout the text demonstrate the application of new concepts. Readers can test their own skills with problems and projects ranging in difficulty from basic to challenging.
This book is designed mainly for an undergraduate course, and the author understands that many readers will not go on to more advanced pure mathematics. He therefore emphasizes an approach to mathematical analysis that can be applied across a range of subjects in engineering and the sciences.
目次
Preface.
Acknowledgements.
Introduction.
0 Preliminaries.
0.1 The Natural Numbers.
0.2 The Rationals.
1 The Real Numbers and Completeness.
1.0 Introduction.
1.1 Interval Arithmetic.
1.2 Families of Intersecting Intervals.
1.3 Fine Families.
1.4 Definition of the Reals.
1.5 Real Number Arithmetic.
1.6 Rational Approximations.
1.7 Real Intervals and Completeness.
1.8 Limits and Limiting Families.
Appendix: The Goldbach Number and Trichotomy.
2 An Inverse Function Theorem and its Application.
2.0 Introduction.
2.1 Functions and Inverses.
2.2 An Inverse Function Theorem.
2.3 The Exponential Function.
2.4 Natural Logs and the Euler Number.
3 Limits. Sequences and Series.
3.1 Sequences and Convergence.
3.2 Limits of Functions.
3.3 Series of Numbers.
Appendix I: Some Properties of Exp and Log.
Appendix 11: Rearrangements of Series.
4 Uniform Continuity.
4.1 Definitions and Elementary Properties.
4.2 Limits and Extensions.
Appendix I: Are there Non-Continuous Functions?
Appendix XI: Continuity of Double-Sided Inverses.
Appendix III: The Goldbach Function.
5 The Riemann Integral.
5.1 Definition and Existence.
5.2 Elementary Properties.
5.3 Extensions and Improper Integrals.
6 Differentiation.
6.1 Definitions and Basic Properties.
6.2 The Arithmetic of Differentiability.
6.3 Two Important Theorems.
6.4 Derivative Tools.
6.5 Integral Tools.
7 Sequences and Series of Functions.
7.1 Sequences of Functions.
7.2 Integrals and Derivatives of Sequences.
7.3 Power Series.
7.4 Taylor Series.
7.5 The Periodic Functions.
Appendix: Binomial Issues.
8 The Complex Numbers and Fourier Series.
8.0 Introduction.
8.1 The Complex Numbers C.
8.2 Complex Functions and Vectors.
8.3 Fourier Series Theory.
References.
Index.
「Nielsen BookData」 より