Laplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems

著者

    • Bıyıkoğlu, Türker
    • Leydold, Josef
    • Stadler, Peter F.

書誌事項

Laplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems

Türker Bıyıkoğlu, Josef Leydold, Peter F. Stadler

(Lecture notes in mathematics, 1915)

Springer, c2007

大学図書館所蔵 件 / 60

この図書・雑誌をさがす

注記

Includes bibliographical references (p. [101]-111) and index

内容説明・目次

内容説明

This fascinating volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domains"), Perron components, and graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology. Eigenvectors of graph Laplacians may seem a surprising topic for a book, but the authors show that there are subtle differences between the properties of solutions of Schroedinger equations on manifolds on the one hand, and their discrete analogs on graphs.

目次

Graph Laplacians.- Eigenfunctions and Nodal Domains.- Nodal Domain Theorems for Special Graph Classes.- Computational Experiments.- Faber-Krahn Type Inequalities.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ