A view from the top : analysis, combinatorics and number theory
著者
書誌事項
A view from the top : analysis, combinatorics and number theory
(Student mathematical library, v. 39)
American Mathematical Society, c2007
大学図書館所蔵 全29件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 135-136)
内容説明・目次
内容説明
This book is based on a capstone course that the author taught to upper division undergraduate students with the goal to explain and visualize the connections between different areas of mathematics and the way different subject matters flow from one another. In teaching his readers a variety of problem solving techniques as well, the author succeeds in enhancing the readers' hands on knowledge of mathematics and provides glimpses into the world of research and discovery. The connections between different techniques and areas of mathematics are emphasized throughout and constitute one of the most important lessons this book attempts to impart. This book is interesting and accessible to anyone with a basic knowledge of high school mathematics and a curiosity about research mathematics. The author is a professor at the University of Missouri and has maintained a keen interest in teaching at different levels since his undergraduate days at the University of Chicago. He has run numerous summer programs in mathematics for local high school students and undergraduate students at his university.The author gets much of his research inspiration from his teaching activities and looks forward to exploring this wonderful and rewarding symbiosis for years to come.
目次
The Cauchy-Schwarz inequality Projections in $\mathbb{R}^3$--The elephant makes an appearance Projections in four dmensions Projections and cubes Incidences and matrices Basics of grids over finite fields Besicovitch-Kakeya conjecture in two dimensions A gentle entry into higher dimensions Some basic counting, probability and a few twists A more involved taste of probability Oscillatory integrals and fun that lies beyond Integer points and a crash course on Fourier analysis Return of the Fourier transform It is time to say goodbye Bibliography.
「Nielsen BookData」 より