Complex topological K-theory

Author(s)

    • Park, Efton

Bibliographic Information

Complex topological K-theory

Efton Park

(Cambridge studies in advanced mathematics, 111)

Cambridge University Press, 2008

  • : hardback

Available at  / 40 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. 203) and indexes

Description and Table of Contents

Description

Topological K-theory is a key tool in topology, differential geometry and index theory, yet this is the first contemporary introduction for graduate students new to the subject. No background in algebraic topology is assumed; the reader need only have taken the standard first courses in real analysis, abstract algebra, and point-set topology. The book begins with a detailed discussion of vector bundles and related algebraic notions, followed by the definition of K-theory and proofs of the most important theorems in the subject, such as the Bott periodicity theorem and the Thom isomorphism theorem. The multiplicative structure of K-theory and the Adams operations are also discussed and the final chapter details the construction and computation of characteristic classes. With every important aspect of the topic covered, and exercises at the end of each chapter, this is the definitive book for a first course in topological K-theory.

Table of Contents

  • 1. Preliminaries
  • 2. K-Theory
  • 3. Additional structure
  • 4. Characteristic classes
  • Bibliography
  • Symbol index
  • Subject index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA85026968
  • ISBN
    • 9780521856348
  • Country Code
    uk
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Cambridge
  • Pages/Volumes
    x, 208 p.
  • Size
    24 cm
  • Parent Bibliography ID
Page Top