Distributions and operators
Author(s)
Bibliographic Information
Distributions and operators
(Graduate texts in mathematics, 252)
Springer, c2009
Available at / 66 libraries
-
Etchujima library, Tokyo University of Marine Science and Technology工流通情報システム
410.8||G 3||252200853001
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references (p. 451-456) and index
Description and Table of Contents
Description
This textbook gives an introduction to distribution theory with emphasis on applications using functional analysis. In more advanced parts of the book, pseudodi?erential methods are introduced. Distributiontheoryhasbeen developedprimarilytodealwithpartial(and ordinary) di?erential equations in general situations. Functional analysis in, say, Hilbert spaces has powerful tools to establish operators with good m- ping properties and invertibility properties. A combination of the two allows showing solvability of suitable concrete partial di?erential equations (PDE). When partial di?erential operators are realized as operators in L (?) for 2 n anopensubset?ofR ,theycomeoutasunboundedoperators.Basiccourses infunctionalanalysisareoftenlimitedtothestudyofboundedoperators,but we here meet the necessityof treating suitable types ofunbounded operators; primarily those that are densely de?ned and closed.
Moreover, the emphasis in functional analysis is often placed on selfadjoint or normal operators, for which beautiful results can be obtained by means of spectral theory, but the cases of interest in PDE include many nonselfadjoint operators, where diagonalizationbyspectraltheoryisnotveryuseful.Weincludeinthisbooka chapter on unbounded operatorsin Hilbert space (Chapter 12),where classes of convenient operators are set up, in particular the variational operators, including selfadjoint semibounded cases (e.g., the Friedrichs extension of a symmetric operator), but with a much wider scope. Whereas the functional analysis de?nition of the operators is relatively clean and simple, the interpretation to PDE is more messy and complicated.
Table of Contents
Distributions and derivatives.- Motivation and overview.- Function spaces and approximation.- Distributions. Examples and rules of calculus.- Extensions and applications.- Realizations and Sobolev spaces.- Fourier transformation of distributions.- Applications to differential operators. The Sobolev theorem.- Pseudodifferential operators.- Pseudodifferential operators on open sets.- Pseudodifferential operators on manifolds, index of elliptic operators.- Boundary value problems.- Boundary value problems in a constant-coefficient case.- Pseudodifferential boundary operators.- Pseudodifferential methods for boundary value problems.- Topics on Hilbert space operators.- Unbounded linear operators.- Families of extensions.- Semigroups of operators.
by "Nielsen BookData"