Stable homotopy around the Arf-Kervaire invariant
著者
書誌事項
Stable homotopy around the Arf-Kervaire invariant
(Progress in mathematics, v. 273)
Birkhäuser, c2009
大学図書館所蔵 全41件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [217]-233) and index
内容説明・目次
内容説明
Were I to take an iron gun, And ?re it o? towards the sun; I grant 'twould reach its mark at last, But not till many years had passed. But should that bullet change its force, And to the planets take its course, 'Twould never reach the nearest star, Because it is so very far. from FACTS by Lewis Carroll [55] Let me begin by describing the two purposes which prompted me to write this monograph. This is a book about algebraic topology and more especially about homotopy theory. Since the inception of algebraic topology [217] the study of homotopy classes of continuous maps between spheres has enjoyed a very exc- n n tional, central role. As is well known, for homotopy classes of maps f : S ?? S with n? 1 the sole homotopy invariant is the degree, which characterises the homotopy class completely. The search for a continuous map between spheres of di?erent dimensions and not homotopic to the constant map had to wait for its resolution until the remarkable paper of Heinz Hopf [111]. In retrospect, ?nding 3 an example was rather easy because there is a canonical quotient map from S to 3 1 1 2 theorbitspaceofthe freecircleactionS /S =CP = S .
目次
Preface.- 1. Algebraic Topology Background.- 2. The Arf-Kervaire Invariant via QX 43.- 3. The Upper Triangular Technology.- 4. A Brief Glimpse of Algebraic K-theory.- 5. The Matrix Corresponding to $1\wedge\psi^3$.- 6. Real Projective Space.- 7. Hurewicz Images, BP-theory and the Arf-Kervaire Invariant.- 8. Upper Triangular Technology and the Arf-Kervaire Invariant.- 9. Futuristic and Contemporary Stable Homotopy.- Bibliography.- Index.
「Nielsen BookData」 より