The monster group and majorana involutions
著者
書誌事項
The monster group and majorana involutions
(Cambridge tracts in mathematics, 176)
Cambridge University Press, 2009
- : Hardback
大学図書館所蔵 全36件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical reference (p. 245-250) and index
内容説明・目次
内容説明
This is the first book to contain a rigorous construction and uniqueness proof for the largest and most famous sporadic simple group, the Monster. The author provides a systematic exposition of the theory of the Monster group, which remains largely unpublished despite great interest from both mathematicians and physicists due to its intrinsic connection with various areas in mathematics, including reflection groups, modular forms and conformal field theory. Through construction via the Monster amalgam - one of the most promising in the modern theory of finite groups - the author observes some important properties of the action of the Monster on its minimal module, which are axiomatized under the name of Majorana involutions. Development of the theory of the groups generated by Majorana involutions leads the author to the conjecture that Monster is the largest group generated by the Majorana involutions.
目次
- Preface
- 1. M24 and all that
- 2. The Monster amalgam M
- 3. 196 883-representation of M
- 4. 2-local geometries
- 5. Griess algebra
- 6. Automorphisms of Griess algebra
- 7. Important subgroups
- 8. Majorana involutions
- 9. The Monster graph
- 10. Fischer's story
- References
- Index.
「Nielsen BookData」 より