Hilbert transforms

Author(s)

    • King, Frederick W.

Bibliographic Information

Hilbert transforms

Frederick W. King

(Encyclopedia of mathematics and its applications / edited by G.-C. Rota, 124-125)

Cambridge University Press, 2009

  • v. 1 : hardback
  • v. 2 : hardback

Available at  / 55 libraries

Search this Book/Journal

Note

Includes bibliographical references (v. 1, p. 745-823; v. 2, p. 547-625) and indexes

Description and Table of Contents

Volume

v. 2 : hardback ISBN 9780521517201

Description

The Hilbert transform has many uses, including solving problems in aerodynamics, condensed matter physics, optics, fluids, and engineering. Written in a style that will suit a wide audience (including the physical sciences), this book will become the reference of choice on the topic, whatever the subject background of the reader. It explains all the common Hilbert transforms, mathematical techniques for evaluating them, and has detailed discussions of their application. Especially useful for researchers are the tabulation of analytically evaluated Hilbert transforms, and an atlas that immediately illustrates how the Hilbert transform alters a function. A collection of exercises helps the reader to test their understanding of the material in each chapter. The bibliography is a wide-ranging collection of references both to the classical mathematical papers, and to a diverse array of applications.

Table of Contents

  • Preface
  • List of symbols
  • List of abbreviations
  • Volume II: 15. Hilbert transforms in En
  • 16. Some further extensions of the classical Hilbert transform
  • 17. Linear systems and causality
  • 18. The Hilbert transform of waveforms and signal processing
  • 19. Kramers-Kronig relations
  • 20. Dispersion relations for some linear optical properties
  • 21. Dispersion relations for magneto-optical and natural optical activity
  • 22. Dispersion relations for nonlinear optical properties
  • 23. Some further applications of Hilbert transforms
  • Appendix 1. Table of selected Hilbert transforms
  • Appendix 2. Atlas of selected Hilbert transform pairs
  • References
  • Subject index
  • Author index.
Volume

v. 1 : hardback ISBN 9780521887625

Description

The Hilbert transform has many uses, including solving problems in aerodynamics, condensed matter physics, optics, fluids, and engineering. Written in a style that will suit a wide audience (including the physical sciences), this book will become the reference of choice on the topic, whatever the subject background of the reader. It explains all the common Hilbert transforms, mathematical techniques for evaluating them, and has detailed discussions of their application. Especially useful for researchers are the tabulation of analytically evaluated Hilbert transforms, and an atlas that immediately illustrates how the Hilbert transform alters a function. A collection of exercises helps the reader to test their understanding of the material in each chapter. The bibliography is a wide-ranging collection of references both to the classical mathematical papers, and to a diverse array of applications.

Table of Contents

  • Preface
  • List of symbols
  • List of abbreviations
  • Volume I: 1. Introduction
  • 2. Review of some background mathematics
  • 3. Derivation of the Hilbert transform relations
  • 4. Some basic properties of the Hilbert transform
  • 5. Relationship between the Hilbert transform and some common transforms
  • 6. The Hilbert transform of periodic functions
  • 7. Inequalities for the Hilbert transform
  • 8. Asymptotic behavior of the Hilbert transform
  • 9. Hilbert transforms of some special functions
  • 10. Hilbert transforms involving distributions
  • 11. The finite Hilbert transform
  • 12. Some singular integral equations
  • 13. Discrete Hilbert transforms
  • 14. Numerical evaluation of Hilbert transforms
  • References
  • Subject index
  • Author index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA89750591
  • ISBN
    • 9780521887625
    • 9780521517201
  • LCCN
    2008013534
  • Country Code
    uk
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Cambridge
  • Pages/Volumes
    2 v.
  • Size
    24 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top