Mathematical methods in biology
Author(s)
Bibliographic Information
Mathematical methods in biology
(Pure and applied mathematics)
Wiley, c2009
- : pbk
Available at 24 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references and index
Description and Table of Contents
Description
A one-of-a-kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory.
The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic.
In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB (R), but can also be replicated using other software packages, including R, Mathematica (R), and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem-solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study.
Extensively class-tested to ensure an easy-to-follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.
Table of Contents
Preface. 1. Introduction To Ecological Modeling.
1.1 Mathematical Models.
1.2 Rates of Change.
1.3 Balance Laws.
1.4 Temperature in the Environment.
1.5 Dimensionless Variables.
1.6 Descriptive Statistics.
1.7 Regression and Curve Fitting.
1.8 Reference Notes.
2. Population Dynamics for Single Species.
2.1 Laws of Population Dynamics.
2.2 Continuous Time Models.
2.3 Qualitative Analysis of Population Models.
2.4 Dynamics of Predation.
2.5 Discrete Time Models.
2.6 Equilibria, Stability, and Chaos.
2.7 Reference Notes.
3. Structure and Interacting Populations.
3.1 Structure--Juveniles and Adults.
3.2 Structured Linear Models.
3.3 Nonlinear Interactions.
3.4 Appendix--Matrices.
3.5 Reference Notes.
4. Interactions in Continuous Time.
4.1 Interacting Populations.
4.2 Phase Plane Analysis.
4.3 Linear Systems.
4.4 Nonlinear Systems.
4.5 Bifurcation.
4.6 Reference Notes.
5. Concepts of Probability.
5.1 Introductory Examples and Definitions.
5.2 The Hardy-Weinberg Law.
5.3 Continuous Random Variables.
5.4 Discrete Random Variables.
5.5 Joint Probability Distributions.
5.6 Covariance and Correlation.
5.7 Reference Notes.
6. Statistical Inference.
6.1 Introduction.
6.2 Interval Analysis.
6.3 Estimating Proportions.
6.4 The Chi-Squared Test.
6.5 Hypothesis Testing.
6.6 Bootstrap Methods.
6.7 Reference Notes.
7. Stochastic Processes.
7.1 Introduction.
7.2 Randomizing Discrete Dynamics.
7.3 Random Walk.
7.4 Birth Processes.
7.5 Stochastic Differential Equations.
7.6 SDEs from Markov Models.
7.7 Solving SDEs.
7.8 The Fokker-Planck Equation.
7.9 Reference Notes.
A. Hints and Solutions to Exercises
by "Nielsen BookData"