Intersection spaces, spatial homology truncation, and string theory
著者
書誌事項
Intersection spaces, spatial homology truncation, and string theory
(Lecture notes in mathematics, 1997)
Springer, c2010
大学図書館所蔵 件 / 全52件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 211-213) and index
内容説明・目次
内容説明
Intersection cohomology assigns groups which satisfy a generalized form of Poincare duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose
ordinary rational homology satisfies generalized Poincare duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
目次
Homotopy Theory.- Intersection Spaces.- String Theory.
「Nielsen BookData」 より