Intersection spaces, spatial homology truncation, and string theory

書誌事項

Intersection spaces, spatial homology truncation, and string theory

Markus Banagl

(Lecture notes in mathematics, 1997)

Springer, c2010

大学図書館所蔵 件 / 52

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 211-213) and index

内容説明・目次

内容説明

Intersection cohomology assigns groups which satisfy a generalized form of Poincare duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincare duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.

目次

Homotopy Theory.- Intersection Spaces.- String Theory.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BB02988423
  • ISBN
    • 9783642125881
  • LCCN
    2010928327
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Berlin
  • ページ数/冊数
    xvi, 217 p.
  • 大きさ
    24 cm
  • 分類
  • 親書誌ID
ページトップへ