Variational principles in mathematical physics, geometry, and economics : qualitative analysis of nonlinear equations and unilateral problems
著者
書誌事項
Variational principles in mathematical physics, geometry, and economics : qualitative analysis of nonlinear equations and unilateral problems
(Encyclopedia of mathematics and its applications / edited by G.-C. Rota, [136])
Cambridge University Press, 2010
- : hardback
大学図書館所蔵 全48件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [349]-360) and indexes
内容説明・目次
内容説明
This comprehensive introduction to the calculus of variations and its main principles also presents their real-life applications in various contexts: mathematical physics, differential geometry, and optimization in economics. Based on the authors' original work, it provides an overview of the field, with examples and exercises suitable for graduate students entering research. The method of presentation will appeal to readers with diverse backgrounds in functional analysis, differential geometry and partial differential equations. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. Since much of the material has a strong geometric flavor, the authors have supplemented the text with figures to illustrate the abstract concepts. Its extensive reference list and index also make this a valuable resource for researchers working in a variety of fields who are interested in partial differential equations and functional analysis.
目次
- Foreword Jean Mawhin
- Preface
- Part I. Variational Principles in Mathematical Physics: 1. Variational principles
- 2. Variational inequalities
- 3. Nonlinear eigenvalue problems
- 4. Elliptic systems of gradient type
- 5. Systems with arbitrary growth nonlinearities
- 6. Scalar field systems
- 7. Competition phenomena in Dirichlet problems
- 8. Problems to Part I
- Part II. Variational Principles in Geometry: 9. Sublinear problems on Riemannian manifolds
- 10. Asymptotically critical problems on spheres
- 11. Equations with critical exponent
- 12. Problems to Part II
- Part III. Variational Principles in Economics: 13. Mathematical preliminaries
- 14. Minimization of cost-functions on manifolds
- 15. Best approximation problems on manifolds
- 16. A variational approach to Nash equilibria
- 17. Problems to Part III
- Appendix A. Elements of convex analysis
- Appendix B. Function spaces
- Appendix C. Category and genus
- Appendix D. Clarke and Degiovanni gradients
- Appendix E. Elements of set-valued analysis
- References
- Index.
「Nielsen BookData」 より