Regularity of minimal surfaces
著者
書誌事項
Regularity of minimal surfaces
(Die Grundlehren der mathematischen Wissenschaften, 340)
Springer, c2010
Rev. and enl. 2nd ed
大学図書館所蔵 全49件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 561-617
Includes index
内容説明・目次
内容説明
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas.
This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateaus problem for H-surfaces in a Riemannian manifold.
A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed.
The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateaus problem have no interior branch points.
目次
Boundary Behaviour of Minimal Surfaces.- Minimal Surfaces with Free Boundaries.- The Boundary Behaviour of Minimal Surfaces.- Singular Boundary Points of Minimal Surfaces.- Geometric Properties of Minimal Surfaces.- Enclosure and Existence Theorems for Minimal Surfaces and H-Surfaces. Isoperimetric Inequalities.- The Thread Problem.- Branch Points.
「Nielsen BookData」 より