Eigenvalues, embeddings and generalised trigonometric functions
著者
書誌事項
Eigenvalues, embeddings and generalised trigonometric functions
(Lecture notes in mathematics, 2016)
Springer, c2011
大学図書館所蔵 件 / 全52件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Bibliography: p. 211-215
Includes indexes
内容説明・目次
内容説明
The main theme of the book is the study, from the standpoint of s-numbers, of integral operators of Hardy type and related Sobolev embeddings. In the theory of s-numbers the idea is to attach to every bounded linear map between Banach spaces a monotone decreasing sequence of non-negative numbers with a view to the classification of operators according to the way in which these numbers approach a limit: approximation numbers provide an especially important example of such numbers. The asymptotic behavior of the s-numbers of Hardy operators acting between Lebesgue spaces is determined here in a wide variety of cases. The proof methods involve the geometry of Banach spaces and generalized trigonometric functions; there are connections with the theory of the p-Laplacian.
目次
1 Basic material.- 2 Trigonometric generalisations.- 3 The Laplacian and some natural variants.- 4 Hardy operators.- 5 s-Numbers and generalised trigonometric functions.- 6 Estimates of s-numbers of weighted Hardy operators.- 7 More refined estimates.- 8 A non-linear integral system.- 9 Hardy operators on variable exponent spaces
「Nielsen BookData」 より