Random fields on the sphere : representation, limit theorems and cosmological applications
著者
書誌事項
Random fields on the sphere : representation, limit theorems and cosmological applications
(London Mathematical Society lecture note series, 389)
Cambridge University Press, 2011
- : pbk
大学図書館所蔵 全46件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [326]-337) and index
内容説明・目次
内容説明
Random Fields on the Sphere presents a comprehensive analysis of isotropic spherical random fields. The main emphasis is on tools from harmonic analysis, beginning with the representation theory for the group of rotations SO(3). Many recent developments on the method of moments and cumulants for the analysis of Gaussian subordinated fields are reviewed. This background material is used to analyse spectral representations of isotropic spherical random fields and then to investigate in depth the properties of associated harmonic coefficients. Properties and statistical estimation of angular power spectra and polyspectra are addressed in full. The authors are strongly motivated by cosmological applications, especially the analysis of cosmic microwave background (CMB) radiation data, which has initiated a challenging new field of mathematical and statistical research. Ideal for mathematicians and statisticians interested in applications to cosmology, it will also interest cosmologists and mathematicians working in group representations, stochastic calculus and spherical wavelets.
目次
- Preface
- 1. Introduction
- 2. Background results in representation theory
- 3. Representations of SO(3) and harmonic analysis on S2
- 4. Background results in probability and graphical methods
- 5. Spectral representations
- 6. Characterizations of isotropy
- 7. Limit theorems for Gaussian subordinated random fields
- 8. Asymptotics for the sample power spectrum
- 9. Asymptotics for sample bispectra
- 10. Spherical needlets and their asymptotic properties
- 11. Needlets estimation of power spectrum and bispectrum
- 12. Spin random fields
- Appendix
- Bibliography
- Index.
「Nielsen BookData」 より