Bibliographic Information

Highlights in Lie algebraic methods

Anthony Joseph, Anna Melnikov, Ivan Penkov, editors

(Progress in mathematics, v. 295)

Birkhäuser , Springer, c2012

Available at  / 36 libraries

Search this Book/Journal

Note

Includes bibliographical references

Description and Table of Contents

Description

This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac-Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac-Moody superalgebras, categories of Harish-Chandra modules, cohomological methods, and cluster algebras.

Table of Contents

Preface.- Part I: The Courses.- 1 Spherical Varieties.- 2 Consequences of the Littelmann Path Model for the Structure of the Kashiwara B( ) Crystal.- 3 Structure and Representation Theory of Kac-Moody Superalgebras.- 4 Categories of Harish-Chandra Modules.- 5 Generalized Harish-Chandra Modules.- Part II: The Papers.- 6 B-Orbits of 2-Nilpotent Matrices.- 7 The Weyl Denominator Identity for Finite-Dimensional Lie Superalgebras.- 8 Hopf Algebras and Frobenius Algebras in Finite Tensor Categories.- 9 Mutation Classes of 3 x 3 Generalized Cartan Matrices.- 10 Contractions and Polynomial Lie Algebras.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BB07411252
  • ISBN
    • 9780817682736
  • LCCN
    2011940727
  • Country Code
    xx
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    [S.l.],New York
  • Pages/Volumes
    xv, 227 p.
  • Size
    25 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top