The ambient metric
Author(s)
Bibliographic Information
The ambient metric
(Annals of mathematics studies, no. 178)
Princeton University Press, 2012
- : hardback
- : pbk
Available at / 44 libraries
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: hardbackFEF||1||1200021323255
-
Hokkaido University, Library, Graduate School of Science, Faculty of Science and School of Science数学
: hardback/F 3212080284632
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references (p. [107]-111) and index
Description and Table of Contents
Description
This book develops and applies a theory of the ambient metric in conformal geometry. This is a Lorentz metric in n+2 dimensions that encodes a conformal class of metrics in n dimensions. The ambient metric has an alternate incarnation as the Poincar metric, a metric in n+1 dimensions having the conformal manifold as its conformal infinity. In this realization, the construction has played a central role in the AdS/CFT correspondence in physics. The existence and uniqueness of the ambient metric at the formal power series level is treated in detail. This includes the derivation of the ambient obstruction tensor and an explicit analysis of the special cases of conformally flat and conformally Einstein spaces. Poincar metrics are introduced and shown to be equivalent to the ambient formulation. Self-dual Poincar metrics in four dimensions are considered as a special case, leading to a formal power series proof of LeBrun's collar neighborhood theorem proved originally using twistor methods. Conformal curvature tensors are introduced and their fundamental properties are established.
A jet isomorphism theorem is established for conformal geometry, resulting in a representation of the space of jets of conformal structures at a point in terms of conformal curvature tensors. The book concludes with a construction and characterization of scalar conformal invariants in terms of ambient curvature, applying results in parabolic invariant theory.
Table of Contents
Chapter 1. Introduction 1 Chapter 2. Ambient Metrics 9 Chapter 3. Formal Theory 17 Chapter 4. Poincar'e Metrics 42 Chapter 5. Self-dual Poincar'e Metrics 50 Chapter 6. Conformal Curvature Tensors 56 Chapter 7. Conformally Flat and Conformally Einstein Spaces 67 Chapter 8. Jet Isomorphism 82 Chapter 9. Scalar Invariants 97 Bibliography 107 Index 113
by "Nielsen BookData"