Intersections of Hirzebruch-Zagier divisors and CM cycles

著者

書誌事項

Intersections of Hirzebruch-Zagier divisors and CM cycles

Benjamin Howard, Tonghai Yang

(Lecture notes in mathematics, 2041)

Springer, c2012

大学図書館所蔵 件 / 48

この図書・雑誌をさがす

注記

Bibliography: p. 135-137

Includes index

内容説明・目次

内容説明

This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.

目次

1. Introduction.- 2. Linear Algebra.- 3. Moduli Spaces of Abelian Surfaces.- 4. Eisenstein Series.- 5. The Main Results.- 6. Local Calculations.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ