Some problems of unlikely intersections in arithmetic and geometry
著者
書誌事項
Some problems of unlikely intersections in arithmetic and geometry
(Annals of mathematics studies, no. 181)
Princeton University Press, 2012
- : pbk
- : hardcover
大学図書館所蔵 全41件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [149]-158) and index
内容説明・目次
内容説明
This book considers the so-called Unlikely Intersections, a topic that embraces well-known issues, such as Lang's and Manin-Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by Umberto Zannier at the Institute for Advanced Study in Princeton in May 2010. The book consists of four chapters and seven brief appendixes, the last six by David Masser. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this (by Masser and the author) to a relative case of the Manin-Mumford issue. The fourth chapter focuses on the Andre-Oort conjecture (outlining work by Pila).
目次
*FrontMatter, pg. i*Contents, pg. v*Preface, pg. ix*Notation and Conventions, pg. xi*Introduction: An Overview of Some Problems of Unlikely Intersections, pg. 1*Chapter 1: Unlikely Intersections in Multiplicative Groups and the Zilber Conjecture, pg. 15*Chapter 2: An Arithmetical Analogue, pg. 43*Chapter 3 Unlikely Intersections in Elliptic Surfaces and Problems of Masser, pg. 62*Chapter 4: About the Andre-Oort Conjecture, pg. 96*Appendix A: Distribution of Rational Points on Subanalytic Surfaces, pg. 128*Appendix B: Uniformity in Unlikely Intersections: An Example for Lines in Three Dimensions, pg. 136*Appendix C: Silverman's Bounded Height Theorem for Elliptic Curves: A Direct Proof, pg. 138*Appendix D: Lower Bounds for Degrees of Torsion Points: The Transcendence Approach, pg. 140*Appendix E: A Transcendence Measure for a Quotient of Periods, pg. 143*Appendix F: Counting Rational Points on Analytic Curves: A Transcendence Approach, pg. 145*Appendix G: Mixed Problems: Another Approach, pg. 147*Bibliography, pg. 149*Index, pg. 159
「Nielsen BookData」 より