A[1]-algebraic topology over a field
著者
書誌事項
A[1]-algebraic topology over a field
(Lecture notes in mathematics, 2052)
Springer, c2012
大学図書館所蔵 全47件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
[1] is superscript
Includes bibliographical references (p. 255-258) and index
内容説明・目次
内容説明
This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homology sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties.
目次
1 Introduction.- 2 Unramified sheaves and strongly A1-invariant sheaves.- 3 Unramified Milnor-Witt K-theories.- 4 Geometric versus canonical transfers.- 5 The Rost-Schmid complex of a strongly A1-invariant sheaf.- 6 A1-homotopy sheaves and A1-homology sheaves.- 7 A1-coverings.- 8 A1-homotopy and algebraic vector bundles.- 9 The affine B.G. property for the linear groups and the Grassmanian
「Nielsen BookData」 より