Noncommutative Iwasawa main conjectures over totally real fields : Münster, April 2011
Author(s)
Bibliographic Information
Noncommutative Iwasawa main conjectures over totally real fields : Münster, April 2011
(Springer proceedings in mathematics & statistics, v. 29)
Springer, c2013
- : hbk
Available at 25 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library, Research Institute for Mathematical Sciences, Kyoto University数研
: hbkCOA||1||2200026167353
Note
Other editors: Peter Schneider, R. Sujatha, Otmar Venjakob
Includes bibliographical references
Description and Table of Contents
Description
The algebraic techniques developed by Kakde will almost certainly lead eventually to major progress in the study of congruences between automorphic forms and the main conjectures of non-commutative Iwasawa theory for many motives. Non-commutative Iwasawa theory has emerged dramatically over the last decade, culminating in the recent proof of the non-commutative main conjecture for the Tate motive over a totally real p-adic Lie extension of a number field, independently by Ritter and Weiss on the one hand, and Kakde on the other. The initial ideas for giving a precise formulation of the non-commutative main conjecture were discovered by Venjakob, and were then systematically developed in the subsequent papers by Coates-Fukaya-Kato-Sujatha-Venjakob and Fukaya-Kato. There was also parallel related work in this direction by Burns and Flach on the equivariant Tamagawa number conjecture. Subsequently, Kato discovered an important idea for studying the K_1 groups of non-abelian Iwasawa algebras in terms of the K_1 groups of the abelian quotients of these Iwasawa algebras. Kakde's proof is a beautiful development of these ideas of Kato, combined with an idea of Burns, and essentially reduces the study of the non-abelian main conjectures to abelian ones. The approach of Ritter and Weiss is more classical, and partly inspired by techniques of Frohlich and Taylor. Since many of the ideas in this book should eventually be applicable to other motives, one of its major aims is to provide a self-contained exposition of some of the main general themes underlying these developments. The present volume will be a valuable resource for researchers working in both Iwasawa theory and the theory of automorphic forms.
Table of Contents
Preface.- John Coates, Dohyeong Kim: Introduction to the work of M. Kakde on the non-commutative main conjectures for totally real fields.- R. Sujatha: Reductions of the main conjecture.- Ted Chinburg, Georgios Pappas, Martin J. Taylor: The group logarithm past and present .- Peter Schneider, Otmar Venjakob: K_1 of certain Iwasawa algebras, after Kakde.- Mahesh Kakde: Congruences between abelian p-adic zeta functions.- Otmar Venjakob: On the work of Ritter and Weiss in comparison with Kakde's approach.- Malte Witte: Noncommutative Main Conjectures of Geometric Iwasawa Theory.
by "Nielsen BookData"