Stochastic calculus with infinitesimals
著者
書誌事項
Stochastic calculus with infinitesimals
(Lecture notes in mathematics, 2067)
Springer, c2013
大学図書館所蔵 件 / 全50件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 107-110) and index
内容説明・目次
内容説明
Stochastic analysis is not only a thriving area of pure mathematics with intriguing connections to partial differential equations and differential geometry. It also has numerous applications in the natural and social sciences (for instance in financial mathematics or theoretical quantum mechanics) and therefore appears in physics and economics curricula as well. However, existing approaches to stochastic analysis either presuppose various concepts from measure theory and functional analysis or lack full mathematical rigour. This short book proposes to solve the dilemma: By adopting E. Nelson's "radically elementary" theory of continuous-time stochastic processes, it is based on a demonstrably consistent use of infinitesimals and thus permits a radically simplified, yet perfectly rigorous approach to stochastic calculus and its fascinating applications, some of which (notably the Black-Scholes theory of option pricing and the Feynman path integral) are also discussed in the book.
目次
1 Infinitesimal calculus, consistently and accessibly.- 2 Radically elementary probability theory.- 3 Radically elementary stochastic integrals.- 4 The radically elementary Girsanov theorem and the diffusion invariance principle.- 5 Excursion to nancial economics: A radically elementary approach to the fundamental theorems of asset pricing.- 6 Excursion to financial engineering: Volatility invariance in the Black-Scholes model.- 7 A radically elementary theory of Ito diffusions and associated partial differential equations.- 8 Excursion to mathematical physics: A radically elementary definition of Feynman path integrals.- 9 A radically elementary theory of Levy processes.- 10 Final remarks.
「Nielsen BookData」 より