Polyhedral and algebraic methods in computational geometry
著者
書誌事項
Polyhedral and algebraic methods in computational geometry
(Universitext)
Springer, c2013
- : [pbk.]
- タイトル別名
-
Algorithmische Geometrie : polyedrische und algebraische Methoden
大学図書館所蔵 全22件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Revised and updated translation of the German textbook Algorithmische Geometrie: polyedrische und algebraische Methoden, Vieweg, 2008"--Pref., p. vi
Includes bibliographical reference (p. 243-246) and index
内容説明・目次
内容説明
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry.
The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations.
The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Groebner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics.
Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established.
Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
目次
Introduction and Overview.- Geometric Fundamentals.- Polytopes and Polyhedra.- Linear Programming.- Computation of Convex Hulls.- Voronoi Diagrams.- Delone Triangulations.- Algebraic and Geometric Foundations.- Groebner Bases and Buchberger's Algorithm.- Solving Systems of Polynomial Equations Using Groebner Bases.- Reconstruction of Curves.- Plucker Coordinates and Lines in Space.- Applications of Non-Linear Computational Geometry.- Algebraic Structures.- Separation Theorems.- Algorithms and Complexity.- Software.- Notation.
「Nielsen BookData」 より