Combinatorics of minuscule representations
著者
書誌事項
Combinatorics of minuscule representations
(Cambridge tracts in mathematics, 199)
Cambridge University Press, 2013
大学図書館所蔵 全30件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 307-310) and index
内容説明・目次
内容説明
Minuscule representations occur in a variety of contexts in mathematics and physics. They are typically much easier to understand than representations in general, which means they give rise to relatively easy constructions of algebraic objects such as Lie algebras and Weyl groups. This book describes a combinatorial approach to minuscule representations of Lie algebras using the theory of heaps, which for most practical purposes can be thought of as certain labelled partially ordered sets. This leads to uniform constructions of (most) simple Lie algebras over the complex numbers and their associated Weyl groups, and provides a common framework for various applications. The topics studied include Chevalley bases, permutation groups, weight polytopes and finite geometries. Ideal as a reference, this book is also suitable for students with a background in linear and abstract algebra and topology. Each chapter concludes with historical notes, references to the literature and suggestions for further reading.
目次
- Introduction
- 1. Classical Lie algebras and Weyl groups
- 2. Heaps over graphs
- 3. Weyl group actions
- 4. Lie theory
- 5. Minuscule representations
- 6. Full heaps over affine Dynkin diagrams
- 7. Chevalley bases
- 8. Combinatorics of Weyl groups
- 9. The 28 bitangents
- 10. Exceptional structures
- 11. Further topics
- Appendix A. Posets, graphs and categories
- Appendix B. Lie theoretic data
- References
- Index.
「Nielsen BookData」 より