Spaces of PL manifolds and categories of simple maps
著者
書誌事項
Spaces of PL manifolds and categories of simple maps
(Annals of mathematics studies, no. 186)
Princeton University Press, 2013
- : pbk
大学図書館所蔵 全38件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [175]-178) and index
内容説明・目次
内容説明
Since its introduction by Friedhelm Waldhausen in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing Waldhausen's program from more than thirty years ago. The main result is a stable parametrized h-cobordism theorem, derived from a homotopy equivalence between a space of PL h-cobordisms on a space X and the classifying space of a category of simple maps of spaces having X as deformation retract. The smooth and topological results then follow by smoothing and triangulation theory. The proof has two main parts. The essence of the first part is a "desingularization," improving arbitrary finite simplicial sets to polyhedra. The second part compares polyhedra with PL manifolds by a thickening procedure. Many of the techniques and results developed should be useful in other connections.
目次
Introduction 1 1.The stable parametrized h-cobordism theorem 7 1.1. The manifold part 7 1.2. The non-manifold part 13 1.3. Algebraic K-theory of spaces 15 1.4. Relation to other literature 20 2.On simple maps 29 2.1. Simple maps of simplicial sets 29 2.2. Normal subdivision of simplicial sets 34 2.3. Geometric realization and subdivision 42 2.4. The reduced mapping cylinder 56 2.5. Making simplicial sets non-singular 68 2.6. The approximate lifting property 74 2.7. Subdivision of simplicial sets over DELTAq 83 3.The non-manifold part 99 3.1. Categories of simple maps 99 3.2. Filling horns 108 3.3. Some homotopy fiber sequences 119 3.4. Polyhedral realization 126 3.5. Turning Serre fibrations into bundles 131 3.6. Quillen's Theorems A and B 134 4.The manifold part 139 4.1. Spaces of PL manifolds 139 4.2. Spaces of thickenings 150 4.3. Straightening the thickenings 155 Bibliography 175 Symbols 179 Index 181
「Nielsen BookData」 より