Probability theory in finance : a mathematical guide to the Black-Scholes formula
著者
書誌事項
Probability theory in finance : a mathematical guide to the Black-Scholes formula
(Graduate studies in mathematics, v. 70)
American Mathematical Society, c2013
2nd ed
大学図書館所蔵 全29件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 299-300) and index
内容説明・目次
内容説明
The use of the Black-Scholes model and formula is pervasive in financial markets. There are very few undergraduate textbooks available on the subject and, until now, almost none written by mathematicians. Based on a course given by the author, the goal of this book is to introduce advanced undergraduates and beginning graduate students studying the mathematics of finance to the Black-Scholes formula. The author uses a first-principles approach, developing only the minimum background necessary to justify mathematical concepts and placing mathematical developments in context.
The book skillfully draws the reader toward the art of thinking mathematically and then proceeds to lay the foundations in analysis and probability theory underlying modern financial mathematics. It rigorously reveals the mathematical secrets of topics such as abstract measure theory, conditional expectations, martingales, Wiener processes, the Ito calculus, and other ingredients of the Black-Scholes formula. In explaining these topics, the author uses examples drawn from the universe of finance. The book also contains many exercises, some included to clarify simple points of exposition, others to introduce new ideas and techniques, and a few containing relatively deep mathematical results.
The second edition contains numerous revisions and additional material designed to enhance the book's usability as a classroom text. These changes include insights gleaned by the author after teaching from the text, as well as comments and suggestions made by others who used the book. Whereas the revised edition maintains the original approach, format, and list of topics, most chapters are modified to some extent; in addition, the rearrangement of material resulted in a new chapter (Chapter 9). With the modest prerequisite of a first course in calculus, the book is suitable for undergraduates and graduate students in mathematics, finance, and economics and can be read, using appropriate selections, at a number of levels.
目次
Table of Contents:
Money and markets
Fair games
Set theory
Measurable functions
Probability spaces
Expected values
Continuity and integrability
Conditional expectation
Lebesgue measure
Martingales
The Black-Scholes formula
Stochastic integration
Solutions
Bibliography
Index
「Nielsen BookData」 より