Local minimization, variational evolution and Γ-convergence
著者
書誌事項
Local minimization, variational evolution and Γ-convergence
(Lecture notes in mathematics, 2094)
Springer, c2014
大学図書館所蔵 件 / 全43件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed.
目次
Introduction.- Global minimization.- Parameterized motion driven by global minimization.- Local minimization as a selection criterion.- Convergence of local minimizers.- Small-scale stability.- Minimizing movements.- Minimizing movements along a sequence of functionals.- Geometric minimizing movements.- Different time scales.- Stability theorems.- Index.
「Nielsen BookData」 より