Popular instructions on the calculation of probabilities
著者
書誌事項
Popular instructions on the calculation of probabilities
(Cambridge library collection)
Cambridge University Press, c2013
- : pbk.
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"This edition first published 1839" "This digitally printed version 2013"--T.p. verso
内容説明・目次
内容説明
The Belgian polymath Lambert Adolphe Jacques Quetelet (1796-1874) was regarded by John Maynard Keynes as a 'parent of modern statistical method'. Applying his training in mathematics to the physical and psychological dimensions of individuals, his Treatise on Man (also reissued in this series) identified the 'average man' in statistical terms. Reissued here is the 1839 English translation of his 1828 work, which appeared at a time when the application of probability was moving away from gaming tables towards more useful areas of life. Quetelet believed that probability had more influence on human affairs than had been accepted, and this work marked his move from a focus on mathematics and the natural sciences to the study of statistics and, eventually, the investigation of social phenomena. Written as a summary of lectures given in Brussels, the work was translated from French by the engineer Richard Beamish (1798-1873).
目次
- Editor's preface
- Author's preface
- Signs employed in this work
- 1. Certainty and probability
- 2. Mathematical probability
- 3. Simple and compound probabilities
- 4. Relative probabilities
- 5. Repeated trials
- 6. Particular cases of the calculation of mathematical probabilities
- 7. Manner of examining probabilities
- 8. Mathematical expectation
- 9. Moral expectation
- 10. Lotteries
- 11. Calculation of probabilities when the number of favourable chances are not known
- 12. Calculation of probabilities when the number of chances is unknown
- 13. The mode of taking mean results
- 14. The measure of the degree of approximation of a mean result
- 15. Application of the calculation of probabilities to human life
- 16. Assurances and life annuities
- 17. Probabilities of witnesses
- 18. Decisions of tribunals and elections
- 19. Conclusion
- Notes.
「Nielsen BookData」 より